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ANALYSIS AND EXPERIMENTS ON STRESS WAVES IN PLANAR TRUSSES

By Samuel M. Howard' and Yih-Hsing Pao’

ABSTRACT: The dynamics of planar trusses are investigated in terms of axial (longitudinal) stress waves, which
propagate along structural members and scatter at the joints. The scattering coefficients representing the reflection
and transmission of axial waves at each joint are derived from the dynamics and compatibility conditions of the
joint. The complex multiple reflections of waves within the structure are evaluated in the frequency domain with

a newly developed reverberation matrix, which is formulated from the scattering coefficients and propagating
phase factors. Transient waves are then derived by Fourier synthesis, and evaluated by a Fast Fourier Transform -
algorithm. Experimental results of propagating broad band pulses are presented for a truss model excited by a
step loading. Comparison between theoretical results and transient wave records indicate that the axial wave
theory is valid only for the response at the very early time. The discrepancy is much reduced if the scattering
coefficients are modified to allow mode conversion from axial to flexural waves at the joint.

INTRODUCTION

The study of impact loading on truss structures dates as far
back as the turn of this century when large railroad bridges
were being built to carry heavy locomotives. Some of the early
research work was mentioned by Nowacki (1963). Boley and
Chao (1957) studied how stress waves are generated by impact
force at a joint of a truss, propagate along the members em-
anating from the loaded joint, and scatter from the joints at
opposite ends. Furthermore, they noted that by calculating all
possible paths of propagation from joint to joint, the dynamic
response of a truss can be described as a superposition of
waves that reverberate within a truss. Because of the numerous
different paths that waves take throughout a typical truss, the
calculation of all of these reverberations is indeed very com-
plicated. Lacking an electronic computer at that time, they
calculated only the first two or three reverberations in the ex-
ample.

Recently, there has been a revival of interest in the wave

propagations or vibrations of lattice-type structures for the pur- ;

pose of controlling localized disturbances or monitoring struc-
tural integrity (Flotow 1986a,b; Nagem and Williams 1989).
This paper reports an analytical method for determining tran-
sient responses of a truss, and the experimental observations
of stress waves propagating in a laboratory model. In the the-
ory, it is assumed, as in Boley and Chao (1957), that the mem-
bers of a truss support only axial forces, and hence uniform
axial stresses at each cross section. This critical assumption
arises from the static theory of pin-jointed trusses, which are
known to support only axial forces in their constituent mem-
bers. Additionally, the assumption of only axial forces is com-
monly used in static analysis even when the members are riv-
eted to gusset plates of the structure or connected by welding,
provided that the members are sufficiently long and siender
but would not buckle under the applied load (Parcel and Moor-
man 1955). In the experimental model, all structural members
were, however, welded together, because the writers encoun-
tered great difficuity in fabricating pin-connectors that would
keep all members aligned to the same plane. Since the inelastic
effect of friction and slack at the joint need not be considered
here, the dynamic responses are assumed linear elastic for the
entire structure (Howard 1990).
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As will be shown later in this paper, however, transverse
forces play a significant role in the transient response even
when they can be neglected in the statical analysis. They arise
due to mode conversion when an incident axial wave is scat-
tered at a joint into bending (transverse) waves, which are
reconverted into axial waves at the next joint. Interestingly,
our experiments indicate that much of the early transient be-
havior of a welded truss can be described in terms of the axial
waves alone, provided that the effect of bending is included
in the evaluation of the scattering coefficients of these joints.
It is hoped that this limited, but simpler, theory involving only
axial motion gives information about the early transients that
may be useful in applications of active control, system iden-
tification, or nondestructive evaluation of structures.

DEFINITIONS

Consider a planar truss with n joints and m members. Each
joint is identified with a number 1 through n and each member
by the two numbers of its end joints. In the analysis, joints
will be denoted with capital letters alphabetically between I,
J, ... O and members with the two capital letters representing
the joints at both ends. Physical quantities associated with joint
J or with member JK will carry superscripts. For example, £
denotes a vector force applied at joint J, and «’* denotes the
axial displacement in member JK. The symbol n’ will denote
the number of neighboring joints connected by m’ members to
joint J (m’ = n').

Fig. 1 depicts joint geometry. All joints at the undeformed
positions are referred to a fixed Cartesian frame with coordi-
nates X, Y. In addition a set of local coordinates x, y is intro-
duced for each member connected to joint J. Thus x’* is the
coordinate that originates from joint J along the center line of
member JK, and x® is another coordinate along the same line
but originating at joint X.
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FIG. 1. Joint Geometry and Notation




AXIAL WAVES IN STRUCTURAL MEMBERS

For members JK of a truss, the axial displacement «’*(x’%,
t) obeys the following well-known wave equation:

Fua™, 1 3N
ax’™ T2 ar

where E = Young's modulus; and p = density. The general
solution to (1) is

uJK( JK' t) =AJK(t + xl‘/c) + Dl‘(t —_ xl‘/c) (2)

where A and D = arbitrary twice differentiable functions.

Eg. (2), which is the D’Alembert solution of (1), may be
interpreted as saying that the stresses in a member may be
expressed as the superposition of two traveling waves, one of
which is traveling in a direction such that it can be said to be
arriving at joint J(**A’"), and the other of which may be inter-
preted as departing from joint J(*“D’’). In an actual truss sub-
jected to loads, A and D are determined by the forces applied
at the joints at either end of a member. Upon taking the Fourier
transform of (2) the solution for harmonic waves is obtained:

W, ) = aM(@)explitx)’"] + d" (w)exp[—itkx)"]  (3)

where @ = radial frequency; a’*, d’* = Fourier transforms of
A’® and D’*; and the wave number k = w/c.

, =Elp )

DYNAMIC LOADING AND SCATTERING OF
WAVES AT JOINT

In order to introduce the subject of wave scattering at a
joint, axial waves only are considered, and the contribution of
bending forces is addressed later. The joint is treated as an
idealized frictionless pin joint without any slack. It is assumed
that two types of equations describe the dynamics of the joint:
(1) balance of forces; and (2) compatibility of motion of the
members (i.e., the motion of the ends of all members must be
consistent with the fact they must remain joined together at a
joint), As shown by Boley and Chao and discussed further in
Appendix I, these equations may be solved and cast into the
following succinct form:

d™(w) = ) S*%w) + sMw) (@ =1, 2, ..., m) @
Q

where the sum over Q = sum over all of the members attached
to the joint J; and a’*(w) = complex frequency-dependent am-
plitude of the axial wave arriving at joint J along member JQ.
Similarly d”(w) represents the wave in member JM that is
departing or traveling away from the joint. S*2, the scattering
factor for the joint, is obtained by solving the aforementioned
force and compatibility equations for the particular joint ge-
ometry. The source term, s™(w), records that portion of de-
parting waves that arise due to external forces applied to the
joint. Formulas for $*/2 and s™(w) are given in Appendix L.

REVERBERATION OF WAVES IN TRUSS

The scattering formulas for each joint may be used to com-
pute the transient behavior of an entire truss or frame. This
may be done in either the time or frequency domains. The
Ume domain approach requires a “‘ray tracing’’ procedure for
all possible reverberation paths throughout the truss, which can
prove quite cumbersome (Howard 1990). The computational
complexity of this approach quickly overwhelms even large
digital computers. For if m’ is the number of members attached
at a typical joint, the number of ray paths to be considered to
model N reverberations is (m’)". Solution by ray tracing be-
comes even more cumbersome if one ever wants to consider
Scattering coefficients that exhibit frequency dispersion (as in
a later section of this paper) because then each ray’s path will

involve a different sequence of scattering coefficients, each
requiring a separate computation of an inverse Fourier Trans-
form to calculate the transient. To overcome the excessive
computational demands of ray tracing, a more efficient tech-
nique was sought for calculating waves in a truss. A new
method, here called the reverberation method, was developed
for this purpose.

First, combine (4) into a matrix expressing the relations be-
tween all arriving and departing waves. For example, for the
joint depicted in Fig. 1 this matrix is as follows:

d.ll sﬂl sUL sm SUN ..IK SJK
dJL _ sl..lK SL.IL SUM leN .JL . 8”' (5)
dnl = SHJK sMJL sMJM SHJH a.IM s.IM
d.IN SNJK SNIL sNIM SNJN aJN BJN
or, more compactly:
d=8%++¢ (6)

The column vector d’ represents a complete list of departures
from joint J in all of the members, and a’ represents that of
the arrivals. Here d’ will be called the total departure vector
at joint J, and a’ the total arrival vector at joint J. The matrix
§’ is called the scattering matrix at joint J, and s’ the source
vector at joint J.

For a truss with n joints and m members, &’ (J = 1,
2, ..., n)in (6) may be treated as a submatrix and a consol-
idated matrix may be constructed for the entire structure in the
following form:

d' s 0 - 0 a' s'

2 2 .. 2

B A - N G B
a 0 0 o0 s]la g

or, more compactly:
CH d=Sa +s (¢))

The column vector d represents a complete list of departures
from all of the joints in all of the members, and a represents
that of the arrivals for the entire structure. Here d will be
called the global departure vector, and a the global arrival
vector. The matrix 8 is called the global scattering matrix, and
s the global source vector.

The size of d, &, and S in (8) can be determined from the
number of members in the structure. If m', m?, ..., m" rep-
resent the number of members at joints 1, 2, ..., n, respec-
tively, the number of elements in the column matrices d and
a should be the sum of m’, which equals 2m, where m is the
total number of members in the structure. The sum is 2m be-
cause each member is connected to a joint at each of its ends.
The matrix § is therefore of size 2m X 2m, with square sub-
matrices arranged along its diagonal; s is a column vector of
size 2m.

The global vectors d and a are further related by a phase
shift factor. Whenever a departing wave is generated at one
end of a member, it propagates down that member and be-
comes an arriving wave at the opposite end. Hence, there is a
one-to-one correspondence between every departing wave and
every arriving wave in a member. Specifically, they are related
by a phase shift factor

a™ = —exp!™ ™ Igm 9)

- @™ = —exp!* g 10)

where ™ = length of member JM. Note that the superscript
order is reversed for the departures in (9) and (10). This is
because the departures are defined at joint M, whereas the
arrivals are defined at joint J at the opposite end of the mem-
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ber. The change of sign is due to the reversal of coordinate x.
A new total vector is defined at joint J, d’, and a new global
vector, d, lists the departures for the entire structure:

e
12
&= a: an
| &
3
2
d= a (12)
al
The individual elements of the vector d are exactly identical
to those in d, but the order of indicative indices has been
permuted. The components of d are grouped according to their

destination joint rather than their departure joint. We may ex-
press this equivalence through a permutation matrix U:

b

d=Ud (13)

where U = 2m X 2m matrix that interchanges the elements of
d’® and 4" in the column vector d. Like all permutation ma-
trices, it consists of many 0 elements with a single element of
value 1 in each row and each column. The precise form of U
depends on the scheme by which neighboring joints are num-
bered. Once a joint numbering scheme is chosen, the place-
ment of the elements d’* within the column vector d is deter-
mined and the permutation matrix is easily found by
inspection. If, for example, 4™ and d® occupy, respectively,
the ith and pth elements in the column vector, then Up=Upn
=1

In terms of the newly introduced vector, d, the arrival vector
in (8) may be written in matrix form

a=PL, wd (14)

where

cea 0
0 —exp(—ik™F™)

OO

PL, w) = (15)

0 0 0
and where L = 2m column vector containing the length of all
members. P is called the propagation matrix. It is a diagonal
matrix of size 2m X 2m containing the phase shift factors of
(9) and (10) along its diagonal. Using (8), (13), and (14), a
direct relationship is finally obtained between the waves in the
structure and the applied force

d(w) = [I — SPU] 's(w) (16)

The matrix product SPU is defined as the reverberation matrix
R(w) (size 2m X 2m) and (16) is rewritten as

d(w) = [I - R)] 's(w) an

The factor s(w) is a source function representing the Fourier
transform of the waves in all members generated by the forces
£'(r) applied at each joint. It may contain many zero elements
when the external forces are applied at only one or two joints.
The factor [I — R(w)]™" is the transfer function for the struc-
ture, which relates the response of the truss d(w) to the exci-
tation s{(w) in the frequency domain. Substitution of an element
of d(w) in (17) together with the corresponding element of
a(w) = PUd(w) in (14) gives rise to the frequency response
(in displacement) for a structure member of the truss.

Since the frequency response of all structure members in-
volves the inverse of the matrix [I — R(w)], the response is
singular if
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det{ll — R(w)] =0 (18)

This is the characteristic equation for natural frequencies of
the truss.

It appears that the final results shown in (17) etc. resemble
those in traditional matrix analysis of structures (Nowacki
1963; Clough and Penzien 1975), where the [I — R] resembles
the dynamic stiffness matrix and the (I — R]™ the dynamic
compliance matrix of the entire structure. The physical mean-
ings of the matrices are, however, very much different. This
analysis is similar to that presented by Nagam and Williams
(1989), who combine the transfer matrix of state variable for
the member, the displacement u and normal force F for axial
waves, with a joint matrix that relates the state variables at
one end of the member to those at the joint. Since they were
interested in analyzing the vibration of structures, the transfer
matrices are formulated in terms of standing waves in the
member. The present formulation chooses the departing wave
vector d and the arrival wave vector a at each end of a member
as the state variables. The d is related to a by the scattering
matrix, and to the applied forces by a joint matrix. An addi-
tional equation that relates in two unknown a and d is sup-
plemented by considering reverberation of traveling waves
within the structure. As shown in the next section, this for-
mulation is particularly suitable for evaluating transient waves
by Fourier synthesis.

TRANSIENT WAVES IN TRUSS

To compute the transient solution for the axial displacement
or strain in member JK, it is necessary to formulate these quan-
tities in terms of the arriving and departing waves. From (3)
and the definition of strain as the derivative of (%, w) with
respect to x’%,

5", w) = ik (@ (w)exp{—ilkd — I}
— d"®(w)exp[—itkx)™]) 19

To compute the transient solution it is necessary to combine

(3) and (19) with (16) and take the inverse Fourier Transform.
Then (3) becomes

ux, )= I [PL — x, o)U ~ P(x, »)]{I — R(w)] " 's(w)e™ dw
(20)
and (19) becomes

ex, b)) = f K[PL - x, ») + Px, o)][I — R(w)] 's(w)e™ dw
@n

where x = vector of positions along each of the members;
K = diagonal matrix containing the wave numbers for each
member; and € = column vector of longitudinal strains cor-
responding to u.

The evaluation of (20) and (21) is not simple, however,
because of the poles associated with the term [I — R(w) -
In principle, one may calculate the sum of the residues at each
pole of the integrand in (21) to evaluate the integral. This is
equivalent to finding the solution in terms of the normal modes
of the structure. An accurate transient solution can only be
found however, by summing a large number of modes. An-
other method is to expand the transfer function in a Neumann
series

I-RwI'=d+R+R+R +--+RH+Q @2

where the remainder Qy is given by



Q= - RR"

Substituting (22) into (21) and dropping the remainder, one
can then evaluate the inverse transform term by term to obtain
the “‘ray solution’’

23)

eX, = f K[PL — x)U + P(x)]

XT+R+R+ R+ + R+ Quls(w)e™ dw 24)

The first term in the integral of (24) contains the waves orig-
inally generated by the applied forces, which propagate away
from the loading joints to the receivers at x. The second term,
which is the first term multiplied by R(w), contains the first
set of reflections and transmissions of the source waves at the
neighboring joints. This process continues up to the Nth term.

It is important to note that after integration, the transient
wave departures represented in each term of the expansion do
not occur at the same time. These temporal differences occur
because of the different lengths of the truss members and pos-
sibly different wave speeds in the members. The phase shift
terms in P(x, w) and R(w) keep track of the various propa-
gation lengths. The maximum initiation time for the reverber-
ations in the truncated series is t%., = Nt,.., where .. is the
maximum propagation delay of all of the members (i.e., the
delay of the longest member when all members are made of
the same material). For times greater than t.,, the response
contains no new wave departures.

The truncated series solution is valid up until a time i,
beyond which some wave reverberations are not included;
th is equal to N, where t., is defined as the minimum
propagation delay of all of the members. For times greater than
! the neglected terms in the remainder series may have to
be included to obtain the correct sclution.

EXPERIMENTS WITH STRUCTURAL MODELS

In designing the experiment, an attempt was made to pro-
vide a truss specimen whose behavior was as close as possible
to that of a pin-jointed truss. Agreement was first sought be-
tween experimental measurements of static strains and those
predicted by the pin-jointed mode! under static loading.

Because it was expected that the joint behavior would be a
critical factor in the design of the experiment, considerable
effort was expended in selecting an appropriate method of at-
tachment between members. Four different types of joints
were created and evaluated, including (a) pinning together alu-
minum tubes through concentric holes at their ends, in which
case the tubes are all held together by a single pin; (b) clamp-

0.28cm hole 1
3

b

ing the members in a style similar to a gusset plate joint, where
a pin is inserted through the two clamping plates to hold each
member in place; (c) solid joints where the members are con-
tinuously joined by machining the truss out of an aluminum
plate; and (d) welded joints, which were created by welding
together members and filing away excess metal at the joints
to minimize the effects of such excess material on wave scat-
tering.

For each specimen, a static load was applied by tying a
weight to a joint. Strains were measured using commercially
available Constantin foil strain gages which were mounted to
cach member. Errors for the strain gage readings were esti-
mated to be less than 1 p strain and were probably dominated
by thermal drift. Two nearly identical gages were mounted at
opposite sites of each member at midpoint, the average of two
readings being the strain due to axial force and one-half of the
difference of two readings being the strain due to bending.

Surprisingly, agreement with the static theory was best for
the welded aluminum truss shown in Fig. 2. As shown in that
figure, the specimen was constructed by welding together
0.635 X 0.635 cm (1/4 in. square rod) bars of 7-6061 alumi-
num at the joints. For convenience in constructing the speci-
men, the dimensions of each bay were chosen to be in a
3:4:5 ratio—specifically, each bay had a height of 0.406 m
(16 in.), a length of 0.305 m (12 in.), and a diagonal member
of length 0.635 m (25 in.). The Young’s modulus for the alu-
minum is taken as 69.0 GPa, and the corresponding bar ve-
locity ¢ = 5,039 m/s. The supports for this specimen were
designed to approximate an ideal hinge and an ideal friction-
less roller. To accomplish this, at each upper corner of the
truss, a 0.28-cm hole was drilled so that support dowels could
be inserted. These support dowels were in turn inserted in
aluminum brackets, which carried the weight of the structure.
One dowel was inserted in a slotted hole in the support brack-

ets, to simulate a roller support.

*Two sets of data for axial strains at the middle of each
member were recorded, one for a weight of 113 N (25.4 Ib)
hanging under joint 6, and another for a weight of 140 N (31.5
Ib). The measured values agree closely with the theoretical
values of strain based on the theory for pin-connected truss,
with errors ranging from 0.0 to 11.1%. Theoretical values of
strains for the truss with rigid joints, a statically indeterminate
structure, were evaluated later (Pao and Keh 1996). They dif-
fer not more than 5.7% from those for pin-connected truss.
For the lower chord 4-6, vertical member 5-6, and upper chord
5-7 the measured strains € in micrometer per meter (107%) and
the theoretical values (given in parentheses) are, respectively,
£ = 32.0 (30.6), €56 = 22.5 (20.4), and &; = —30.0 (—30.6)
when the weight of 113 N was suspended at joint 6. The cor-
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FIG. 2. Aluminum Truss with Welded Connections
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responding experimental and theoretical values of axial strains
(10~*) due to bending are €u = 7.0 (1.1), €5 = 1.5 (0.3), and
Eq7p = 0.0 (1.1).

The same strain gages that were used for static measure-
ments were also used for dynamic measurements. A detailed
analysis of the dynamic range of strain gages was given by Oi
(1966), where it is shown that the rise-time ¢, of a gage to an
ideal step function is given by

t,<02ms + 0.8L/c 25

where L = length of the gage; and ¢ = wave speed of the
substrate on which it is mounted. Furthermore, Oi shows that
the “cutoff’’ frequency (f,) of the gage, where its response
falls to 1/V/2 of its static response, is given by

f. = 0.350, (26)

Given that L = 5.59 mm for the gage and ¢ = 5,039 m/s for
T—6061 aluminum, one expects f; to be 318 kHz.

Fig. 3 shows the experimental setup to capture for recording
and processing the data. The gages were connected to an eight-
channel bridge amplifier circuit from Ectron Corporation,
which has a 0.7 rolloff point of 100 kHz. The signals from
the amplifier were captured digitally using a Tektronix 390AD
converter that was set to sample at 1 MHz, that is, 10 times
the bandwidth of the amplifier. A total of eight channels could
be recorded simultaneously with 2,048 data points in each
channel. Typically, signals from two gages mounted on either
side of four members were recorded simultaneously. Dynamic
axial strains were determined by averaging the signals from
both sides of a member. The experimental error is estimated
~as 1 p strain, and appears to be due to random thermal noise.

The truss was loaded first statically by hanging a known
weight with a string at the central joint. Dynamic loading was
created by suddenly burning the string. The source time func-
tion of the transient excitation is therefore simulated by a step

unloading or the complementary Heaviside step function, 1 — -
H(z). There are two advantages of using a step pulse. First, as -

mentioned previously, the static strain before unloading pro-
vides a way to check the static response of the structure. Sec-
ond, in principle, such a sharp pulse makes it easier to discern
individual wave arrivals. Several types of threads and poly-
mer-based lines were tried, but a braided trolling line (rated

Connections to
any 8 gages

Ectron 863 HN
Bridge — Balance. Amplifier
(8 chonnels)

Biomation 8100
Tronsient recorder

Strain
signals

Tek 390A0
2-channels

trig \—\ trig

FIG. 3. Schematic of Apparatus Used for Data Acqulslﬂon
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Tek 390AD
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\ trig ( trig
\/_//;ored doto

MINC Data
Axquistion Computer

Tek 390AD
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Trigger
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for 50-1b loads) was found to give the sharpest pulse, produc-
ing a steplike pulse of 20 to 30 s duration when it was loaded
with 113 N and burned with a cigarette lighter.

Experimental strain data due to axial force for the afore-
mentioned three members as shown are discussed along with
the theoretical transient results in the next section. The step
unloading dynamic data are converted to those for the step
loading, a unit Heaviside time function H(r). The conversion
was achieved by subtracting the experimental data for the
complemental Heaviside function from a constant value of the
static initial strain.

TRANSIENT AXIAL WAVES AND EFFECT OF
BENDING BY JOINTS

The method of reverberation matrix presented in previous
sections has been implemented in FORTRAN code, with the
frequency synthesis implied by (24) accomplished via the Fast
Fourier. Transform (FFT). As a check, results were compared
against those obtained by ray-tracing of D’Alembert’s solution
(Boley and Chao 1957) and found to be in excellent agree-
ment, as shown in Fig. 4 for member 1-2 as a typical example.
The theoretical results are shown for a unit step compressive
force (Heaviside step function) applied to joint 6.

In Fig. 4 and subsequent figures, the strain in each member
is normalized by €, = f/EA = 40.6 pm/m, where f; = weight
at joint 6, 113 N; and EA = 2.782 X 10° N for the square
aluminum rod. Because the dimensions of each bay are in a
3:4:5 ratio, the time scale is normalized so that the time for
an axial wave to traverse each corresponding member is 3, 4,
and S time units, respectively—this makes one normalized
time unit 20.16 ps.

Dynamic axial strains in the members around the loaded

oS vl M R M v/

0.0

0.5

normalized strain

Ray Tracing —
Reverberation Method -

15 ! ) 1 | 1 |
0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

normalized time
FIG. 4. Comparison of Dynamic Strains as Determined by Ray
Tracing and Reverberation Method in Member 1-2

05r 1

[~
‘g .
E
2 experiment
-10 axial wave theory
axial wave theory with bending correction ==
static value = -0.5
.1.5 J 1. 1 1 1 1 1 1 1 —J
2100 0.0 100 200 30.0 400 500 60.0 70.0 80.0 900

normalized time

FIG. 5. Axial Strain in Member 6-5
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FIG. 6. Axial Strain in Member 4-8
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FIG. 7. Axlal Strain in Member 5-7

joint for both experimental data and theoretical values, using :

the theory of the previous sections and the modified theory to
be described below, are shown in Figs. 5-7. It is notable that

the measured first arrivals, instead of being sharp step func- -

tions, are more ramplike, with a rise time usually much longer
than the 20 to 30 ps of the source functions. This is in fact
due to dispersion in the axial scattering coefficients brought
“about by the influence of bending forces. To include the effect
of these bending forces on the axial waves it is necessary to
modify the previously described theory.

Modified Scattering Matrix

The scattering of incident axial wave or flexural wave at a
rigid joint has been discussed by several authors (Howard
1990; Desmond 1981; Doyle and Kamle 1987). Scattering co-
efficients may be derived under the assumption that members
support two transverse (or bending) modes corresponding to
the Timoshenko theory or the Euler-Bernoulli theory of beams.
Altogether, three wave modes propagate along the members
independently of each other: one axial mode and the two trans-
verse modes. These three modes are coupled only at the joints
by equations that express (1) balance of forces and moments;
(2) compatibility of motion of the members; and (3) constraint
conditions expressing the manner in which the members are
joined together, such as whether the joint is a pinned joint or
rigid joint. The mathematical derivation is referred to Howard
(1990); the scattering coefficient for either pinned-joint or rigid
joint is stated in the following form:

_ AR 3w + AMEG\ o + AN

‘S'JJK
Bloc’w + BloVw + B}

@n

ou_ Citdo + CMoVw + CP
" Bjo*w + BloVw + B}

where 072 = [(R/c)"?]"%; and R = radius of gyration of the cross
section of member JQ. As Vo goes to zero, they approach
the following limits, respectively:

(28)

lim S™X = As" (29)
Vo0 B é
CMJK
lim s™ =2
A, =5 ®0

This limit is precisely the solution obtained for axial waves
alone. This result can be further understood by observing that
oV = [27(RA)Y?'"?, where \ is the wavelength for axial
waves in a member. Thus, when the radius of gyration of the
truss members is much smaller than the wavelength of axial
waves, the scattering may be described in terms of axial waves
alone. :

The model employed in the section on ‘‘Reverberation of
Waves in Truss,”” which considers only axial stress waves, is
a limiting case of a more general model which accounts for
the coupling of axial and bending forces at a joint. As the
frequency increases, this coupling increases and axial wave
energy is increasingly converted into bending wave energy
upon scattering at joints. Eqgs. (27) and (28) thus represent an

‘extension of the axial wave scattering coefficients that takes

into account the conversion of axial wave energy to bending
energy upon scattering. It is relatively straightforward to sub-
stitute (27) and (28) for the scattering coefficients used in (5),
and thus account for this conversion in the reverberation
method. However, a complete model would also describe
mode conversion from bending to axial waves at joints, and
the results based on the complete model will be reported in

th_e future.

Dynamic Responses in Chords and Vertical Member

Figs. S, 6, and 7 show the experimental results as well as
two sets of theoretical records for the dynamic strains in ver-
tical member 5-6, and two chords 4-6 and 5-7, respectively.
One set of the theoretical results is based on the axial wave
theory in the section on ‘‘Reverberation of Waves in Truss,”
and the other on the modified theory with bending correction
as given in this section. The original experimental data for the
case of unit step unloading have been converted to the records
for the case of unit step loading as explained in the previous
section. As can be seen, the agreement of the modified theory
with experiments is superior to that of the axial wave theory.
In fact, up to about 30 time units the agreement is very good.

In all three figures the experimental records gradually ap-
proach the statical values after about 30 time units. The the-
oretical result for the vertical member (Fig. 5) shows a 50%
overshot, and then oscillation about the static value. The ex-
periment record shows a somewhat smaller dynamic overshot.
The theoretical curves for chord 4-6 (Fig. 6) and chord 5-7
(Fig. 7), however, show a 46% and 55% respectively overshot,
whereas the experiment records show very small dynamic am-
plifications.

There are two likely causes for this divergence between the-
ory and experiment. The first is the neglect of mode conver-
sion. Although the modified theory has taken into account the
effect of rotation of a joint on the scattering coefficient (re-
flection and transmission) for the axial waves, it has not in-
cluded the propagation of flexural waves in each member. The
neglect of flexural waves in all members could introduce er-
rors. The second cause is the oversimplification of the math-
ematical model for the actual support. This is suggested by
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the observation that discrepancy starts after the normalized
time ¢ = 20, which is about equal to the arrival time of all
waves being scattered once by either one of the two supports.
The discrepancy becomes large after ¢ = 30, which is about
equal to the arrival time for all waves that have been scattered
twice at the support. It could probably be reduced by modi-
fying the mathematical equations modeling the support such

as (38).

CONCLUSION

The dynamic response of planar trusses has been studied
from a standpoint of the multiple reverberations of traveling
stress waves in such structures. The proposed method of the
reverberation matrix, which is an alternative to conventional
matrix method, has been shown to be well suited for calcu-
lating these transients when the number of ray paths makes
ray tracing of the D’ Alembert solution impractical.

Due to the difficulty of fabricating an ideal pinned joint in
the laboratory, the writers welded slender square aluminum
bars to form the model truss. Experimental methods using a
sensitive strain gage and a rapid unloading technique were
developed to record the transient strains up to 40.6 pm/m in
all members generated by a force of 113 N with a steplike
time function. Wide-bandwidth electronic equipment was used
to measure and record transient signal with a rise time of 30
ps and a duration of 2 ms.

The very early transient behavior of the experimental struc-
ture is described accurately by the theory of axial waves in a
truss with pinned joints (Boley and Chao 1957). The theoret-
ical results are improved by the theory of axial waves in a
truss with rigid joints. It is expected that the remaining dis-
crepancies between experimental and theoretical results could
be further reduced by applying a general theory including both
axial waves and flexural waves in the truss, and by modifying
the mathematical equations for the hinged and roller support.
It is nevertheless hoped that this investigation will be useful
to analyze the impact response of trusses, for system identi-
fication by ultrasonic NDT, and for dynamic control of struc-
tural vibration. )

APPENDIX I. SCATTERING COEFFICIENTS FOR
AXIAL WAVES ALONE

Consider Fig. 1. The equations of force balance are

S FP2(0, ticos 872 = fx = fle)cos ¥ (Q = V2, .. ..m) @D
Q

S P, nsin 6 = fy = f(t)sin ¥ (32)

[7]

Eq. (31) expresses force balance in the x-direction and (32)
expresses force balance in the y-direction. The summation runs
through all m’ members connected to joint J.

The compatibility requirement arises from the assumption
that one may treat the joint as a massless point. Then, the
vector displacements of all members should be the same at
their point of connection. If the joint displacement in the x-

direction is denoted as U’ and in the y-direction as V/, the

compatibility requirement may be expressed as
W20, 1) = U’(1)cos 82 + V/(r)sin 87 (Q = Vv, 2,....m")
(33)
One may solve (31)-(33) by substituting (3) for w’* and using

au’”(x HK. )

F'* = (EA)JK R

(34)

where A’¥ = cross-sectional area of member JK. Substituting
(3) and (34) into (31) and (32) one can express all departing
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waves @™ in terms of arriving waves @’ and applied forces
£/ as follows:

M) = D, SF%w) + sMw) (@=1,2, ..., m)  (39)
Q
where
D ¥y sin(@™ — 6")sin(e™ — 6°0)
SUK = MK 4+ 4 -2
2 2 _YJP,YJL sin(e”’ -
P L
QP L=1V2,....m) 36)
2 v sin@’ — 6’%)sin(8”™ — 6%
= —2i L
d © 2 2 1.nr'_yn. sin®(6”" — ¢’Y)
P L

where 8% = Kronecker delta (equal to 1 if M = K; 0 otherwise)
and

flwy @7

,y.m = AJM.\/;JM—E-W _

If the hinged support is fixed, (35) or (6) is then determined
from the equation for a fixed joint,

u?=0 (38)

The reactive forces at the hinged support can then be calcu-
lated from (31) and (32). On the other hand, if the joint is
supported by a roller free to slide in the x-direction, and the
vertical reactive force fy in (32) and UP are treated as un-
knowns, the scattering matrix is then solved by eliminating fr
and U” from the system of equations 931)-(33).
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APPENDIX Iii.

NOTATION

The following symbols are used in this paper:

LJ...

St e PO

S a-.a ;

global arrival vector;

total arrival vector at joint J;

complex amplitude of wave arriving at joint J
from member K;

axial wave velocity;

global departure vector;

total departure vector at joint J;

complex amplitude of wave departing joint J to-
ward member K;

Young's modulus;

axial force in member JQ;

cutoff frequency for response of strain gage;
force at joint j;

identity matrix;

joint identifiers;

diagonal matrix of member wave numbers;
wave number;

vector of member lengths;

length of strain gage;

bending moment in member JQ;

number of members in entire structure;
number of members attached to joint J;
number of joints in entire structure;

number of neighboring joints for joint J;

P = propagation matrix;
R = reverberation matrix;
R = radius of gyration of member cross section;

S
s’
SHIK

€

global scattering matrix;

scattering matrix for joint J;

scattering coefficient for member MJ to member
JK;

global source matrix;

source vector for joint J;

source wave emanating from joint J in member
IM;

time;

rise time response of strain gage;

permutation matrix for permuting departure vec-
tors to arrival vectors;

axial displacement in member JK;

transverse force in member JQ,

transverse displacement in member JQ;

vector of positions;

position along member JK;

angle of member JQ relative to reference;
density;

square root of ratio of radius a member’s cross-
sectional radius to its axial wave speed;

angle of applied force relative to horizontal ref-
erence frame;

radial frequency; and

symbol for permutated vector.
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